Contributions to the Heat Capacity of Alpha (HCP) Titanium from 200-1000 K

C. R. Brooks¹

Received October 23, 1981

The heat capacity at constant pressure C_p of alpha (HCP) titanium from 200 to 1000 K has been analyzed for contributions from lattice vibrations and electron excitations. Experimental data in the literature have been used to obtain the heat capacity at constant volume C_V by the dilation correction. From C_V has been subtracted an harmonic lattice contribution C_{VH} given by the Debye heat capacity using a single Debye temperature and an electronic contribution C_{VE} . The difference $C_V - (C_{VH} + C_{VE})$ is positive, and from about 600 to 1000 K it is real in the sense that it is larger than the experimental uncertainty in C_V . This difference is attributed to an anharmonic lattice vibration contribution C_{VA} . Two models for *CvE* have been used. One, which includes electron-phonon enhancement, leads to a C_{VA} of about 15% of C_V at 1000 K. The other takes into account the shift in the density of states with temperature and leads to a C_{VA} of about 5% of C_V .

KEY WORDS: anharmonic contributions to heat capacity; electronic heat capacity; heat capacity; lattice heat capacity; titanium.

1. INTRODUCTION

It is frequently assumed that the heat capacity of pure solid metals is composed of independent contributions associated with lattice vibrations and conduction electrons, and, at sufficiently high temperatures, the formation of equilibrium lattice defects. The lattice contribution is separated into components associated with harmonic (C_{VH}) and anharmonic (C_{VA}) lattice vibrations. Using models for the calculation of the contributions from conduction electrons C_{VE} , the formation of defects, and the harmonic

¹ Chemical, Metallurgical and Polymer Engineering Department, The University of Tennessee, Knoxville, Tennessee 37916, USA.

lattice vibrations, the anharmonic contribution can be obtained by subtracting the sum of the other contributions from C_V .

Since the heat capacities of solids are measured at constant pressure, to apply the above procedure requires first obtaining C_V from C_P by the dilation correction [1], given by

$$
C_D = C_P - C_V = \alpha^2 V T / K_T \tag{1}
$$

where V is the specific volume, α is the volumetric coefficient of thermal expansion, K_T is the isothermal compressibility, and T is the absolute temperature. For metals, K_T usually is not available above 300 K, so that certain approximations must be employed to estimate the dilation correction.

In this paper, new measurements [2] of the heat capacity of alpha (hexagonal-close-packed) Ti are used to analyze the contributions to the heat capacity from 200 to 1000 K. All the quantities in Eq. (1) are available over this temperature range, so that C_V can be calculated directly. It is

Fig. 1. Lattice parameter "a" of alpha titanium as a function of temperature.

assumed that the contribution to the heat capacity from harmonic lattice vibrations C_{VH} is given by the Debye theory, using a single Debye temperature. For Ti, the contribution from the formation of lattice defects is negligible at these low temperatures [3]. Models for the contribution to the heat capacity from electron excitation C_{VE} are examined, including electron-phonon interaction. The sum $C_{VH} + C_{VE}$ is subtracted from C_V to obtain an estimate of the contribution C_{VA} from anharmonic lattice vibrations.

2. CALCULATION OF C_p AND C_V

 C_p for Ti above 300 K is taken from our recent measurements [2], in which the error is about $\pm 1\%$. Comparison of these measurements to others in the literature is given in ref. [2] and is not repeated here. The data of Clusius and Franzosini [4], Stalinski and Bieganski [5], and Kothen and Johnston [6] were used to define a curve from 200 to 300 K from which C_p values were taken. These data agree in this range within $\pm 0.5\%$, and the curve smoothly matches the curve used above 300 K.

There have been several measurements of linear expansion and lattice parameters for Ti which allow determination of V and α as functions of temperature. The lattice parameter data [7-9] are shown in Figs. 1 and 2 and are well represented by straight lines. These data were used to calculate V as a function of temperature as shown in Fig. 3. The upper straight line was obtained from the straight lines fitted to the lattice parameters in Figs. 1 and 2. The curve of Yaggee et al. [10] was obtained from their density value measured at 25° C, and the coefficient of expansion was derived from their length measurements.

Fig. 2. Lattice parameter "c" of alpha titanium as a function of temperature.

Fig. 3. The molar volume V as a function of temperature for alpha titanium.

Values of α derived from the length measurements of Hidnert [11], Griener and Ellis [12], McCoy [13], and Yaggee et al. [10], are shown in Fig. 4. A necessity in deriving α from their linear thermal expansion coefficients α_i is that measurements must have been made on polycrystalline samples of random orientation. Since alpha Ti is HCP, any preferred orientation in the sample will give results from which 3α , will not be equal to α . None of the investigators have determined the degree of preferred orientation, so that it is difficult to assess the accuracy of the experimental results.

The values of α and V derived from the data of Yaggee et al. [10] have been chosen to use in calculating C_D . Their results are consistent with those of the other investigators and cover most of the requisite temperature range. From 300 to 200 K, we have extrapolated the α and V curves based on their data. It is seen in Fig. 3 that V scatters within $\pm 0.3\%$, which is taken as its uncertainty. For α , the scatter or uncertainty is about $\pm 5\%$ (Fig. 4).

The only data for Ti from which the isothermal compressibility K can be derived are those of Fisher and Renken [14]. They determined the velocity of sound in single crystals as a function of temperature, from

Fig. 4. The volumetric thermal expansion coefficient α as a function of temperature for alpha titanium.

Fig. 5. Adiabatic compressibility K_S for alpha titanium as obtained by Fisher and Renken $[14]$.

which they calculated the elastic constants and the adiabatic compressibility K_S (Fig. 5). Their reported accuracy in measuring the elastic constants gives an uncertainty in K_s of about $\pm 1\%$.

The use of Eq. (1) to obtain C_V requires converting K_S to K [1]. Incorporating this conversion gives

$$
C_V = \frac{K_S}{\alpha^2 V T^2 + K_S C_P T} C_P^2 T
$$
 (2)

 C_V calculated from Eq. (2) using the selected values of C_P , V, α , and K_S is shown in Fig. 6. Using the uncertainties mentioned above for each

Fig. 6. The heat capacity of alpha (HCP) titanium from 200 to 1000 K. The bars at the ends of C_P , C_V , and C_{VH} show the uncertainty in these quantities.

Heat Capacity of Titanium 377

quantity, the uncertainty in C_V is about $\pm 2\%$, which is shown by the bar at the end of the curve at 1000 K.

At a temperature T , the calculated C_V corresponds to the volume $V(T)$; for comparison of C_V to theoretical models, it must be converted to C_V at a volume usually taken at 0 K. The expression to obtain the correction is given by Korshunov [15]. The difference in C_V at 1000 K for the volume at that temperature (Fig. 3) and that at 0 K is estimated to be 0.2 J · mol⁻¹ · K⁻¹. This is within the uncertainty of the calculation of C_V and is ignored here.

3. CALCULATION OF C_{VH} AND C_{VF}

Now the agreement between the experimental C_V and the sum of that estimated for a harmonically oscillating lattice (C_{VH}) and electron excitation (C_{VE}) is examined. To estimate C_{VH} , the Debye expression with a fixed Debye temperature θ_p is used. The review of Debye temperatures by Gschneidner [16] lists θ_D values from 370 to 430 K for Ti. C_{VH} is not very sensitive to the value of θ_D at temperatures above the Debye temperature, so an intermediate value of $\theta_D = 400$ K has been chosen. A variation in θ_D of ± 30 K alters C_{VH} by about $\pm 2.5\%$ at 300 K, and about $\pm 0.5\%$ at 1000 K. C_{VH} is shown in Fig. 6; the bars at each end of the curve show the uncertainty in C_{VH} based on the uncertainty in θ_D .

Free electron theory can be used to estimate C_{VF} by the relation

$$
C_{VE} = 1/3\pi^2 k^2 N(E_F)T
$$
 (3)

where k is Boltzmann's constant, and $N(E_F)$ is the density of states at the Fermi surface. If the density of state is independent of temperature, then Eq. (3) gives C_{VE} proportional to T, or γT , where γ is the low temperature heat capacity coefficient. Collins and Ho [17] obtained for Ti a value of $\gamma = 3.36 \times 10^{-3}$ J·mol⁻¹·K⁻² from their low temperature heat capacity measurements, which agrees within 2% with the other nine values which they surveyed. C_{VF} using this value is shown in Fig. 7.

Shimizu et al. [18] deduced the density of states for Ti from low temperature heat capacity data of Ti and Ti alloys. Then they took into account the shift in the density of states with temperature to obtain a temperature dependent electronic heat capacity coefficient $\gamma(T)$, so that $C_{VE}^{b} = \gamma(T)T$. (The b represents band theory here.) Their result is shown in Fig. 7 and is higher than that given by the free electron theory. The sum $C_{V\kappa}^b$ + $C_{V\kappa}$ is shown in Fig. 6.

Grimvall [19] has derived an expression for a temperature dependent

Fig. 7. The calculated electronic heat capacity C_{VE} of alpha titanium based on the model by Shimizu et al. [18] and Grimvall [19].

coefficient due to electron-phonon interaction (see also, Fradin [20]):

$$
C_{V_E}^{ep} = (\gamma_0 + \gamma_T)T \tag{4}
$$

Here γ_0 is the coefficient in the absence of electron-phonon interaction, which can be calculated via Eq. (3) if the density of states at the Fermi level is known. There appear to be only two density of state calculations in the literature for Ti. From the density of states distribution curve of Shimizu et al. [18], a value of about 1.69×10^{-3} is obtained and from that of Altmann and Bradley [21] a value of about 0.81×10^{-3} . To obtain γ_T from the calculation of Grimvall requires its value at absolute zero, taken to be the value of γ given by Collins and Ho [17] from low temperature heat capacity measurements. Also required is the Einstein temperature, which was taken as 430 K; γ is not very sensitive to the value chosen. Using these values, a curve for C_{VE}^{ep} was calculated for each of the two values of γ_0 cited above. They are shown in Fig. 7. The sum $C_{VH} + C_{VE}$ for each of the three curves is shown in Fig. 6.

4. THE ANHARMONIC HEAT CAPACITY *Cw4*

In Fig. 8 is shown the difference between C_V and $(C_{VE} + C_{VH})$. It is positive and is real in the sense that the sum obtained by either electronic model gives a result which is lower than the lower bound of the uncertainty in C_V (see Fig. 6). The electronic contribution calculation of Grimvall

Fig. 8. **The anharmonic heat capacity of A1, Cu, Au, Pb, Pt, and Ti. For Ti, curves are shown** for C_{V_A} using two models for the electronic contribution to the heat capacity.

depends on the value of the density of states at the Fermi level. For the density of states distribution curves of both Shimizu et al. [18] and Altmann and Bradley [20], the Fermi level falls on or near a shoulder. Thus the value of the density of states depends sensitively on the location of the Fermi level and the shape of the curve. Until these are better defined, C_{VE} cannot **be determined more accurately. However, in spite of these uncertainties, it** appears that the difference between C_V and $(C_{VE} + C_{VH})$ is real and **positive.**

We attribute this "excess" heat capacity to anharmonic lattice vibrations. The heat capacities of Au [22], A1 [23], Cu [24], Pb [25], and Pt [26, 27], for which the dilation correction can be made exactly (i.e., experimental data for α , V , and K are available as a function of temperature), **have been analyzed in a fashion similar to that employed here for Ti. The results are shown also in Fig. 8. Examination of the uncertainties leading to**

the calculation of C_{V_A} indicates that the magnitude of C_{V_A} for Cu, Au, and perhaps A1 is small, and the sign uncertain. However, for Pb, A1, Pt, and now Ti, the effect is real, and the sign well defined.

There have been some theoretical calculations of C_{VA} , but the magnitude (and in some cases the sign) is uncertain [28,29]. Generally, the prediction is that C_{VA} is linear with temperature, which, considering the uncertainties in calculating C_{VA} from experimental data, is consistent with the results of the treatment here (Fig. 8). No theoretical calculations of C_{VA} have been made for Ti, but the result of the treatment in this paper gives an estimate of C_{VA} to which comparison now can be made.

ACKNOWLEDGMENTS

This work was supported partly by the Department of Energy through Contract DE-05-78-5951. Appreciation is expressed to Dr. P. J. Meschter for reading and commenting upon the manuscript.

REFERENCES

- 1. M. Zemansky, *Heat and Thermodynamics,* 3rd ed. (McGraw-Hill, New York, 1951).
- 2. W.M. Cash and C. R. Brooks, *J. Chem. Thermo.* (in press).
- 3. V.O. Shestopal, *Soy. Phys.--Solid State* 7:2798 (1966).
- 4. K. Clusius and P. Franzosini, *Z. Phys. Chem.* (Frankfurt) 16:194 (1958).
- 5. B. Stalinski and Z. Bieganski, *Roezniki Chem.* 35:273 (1961).
- 6. C.W. Kothen and H. L. Johnston, *J. Am. Chem. Soc.* 75:3101 (1953).
- 7. R.H. Willens, Air Force Office of Sci. Res. Rep. No. 1839 (1961).
- 8. R.L.P. Berry and G. V. Raynor, *Research* 6:21S (1953).
- 9. J. Spreadborough and J. W. Christian, *Proc. Phys. Soc.* (London) 74:609 (1959).
- 10. F.L. Yaggee, E. R. Gilbert, and J. W. Styles, *J. Less-Common Metals* 19:39 (1969).
- 11. P, Hidnert, *J. Res. Natl. Bur. Stds.* 30:101 (1943).
- 12. E.S. Greiner and W. C. Ellis, *Trans. AIME* 180:657 (1949).
- 13. H.E. McCoy, *Trans. ASM* 57:743 (1964).
- 14. E, S. Fisher and C. J. Renken, *Phys. Rev.* 135:A482 (1964).
- 15. V.A. Korshunov, *Phys. Met. Metallog.* 42(2):54 (1976).
- 16. K. A. Gschneidner, In *Solid State Physics,* Vol. 16, F. Seitz and D. Turnbull, ed., (Academic Press, New York, 1964).
- 17. E.W. Collins and J. C. Ho, *Phys. Rev. B* 2:235 (1970).
- 18. M. Shimizu, T. Takahashi, and A. Katsuki, *J. Phys. Soc. Japan* 18:1192 (1963).
- 19. G. Grimvall, *J. Phys. Chem. Solids* 29:1221 (1968).
- 20. F.Y. Fradin, *Solid State Commun.* 16:1193 (1975).
- 21. S.L. Altmann and C. J. Bradley, *Proc. Phys. Soe.* 92:764 (1967).
- 22. G. Cordoba and C. R. Brooks, *Phys. Stat. Sol. (a)* 6:581 (1971).
- 23. C.R. Brooks and R. E. Bingham, *J. Phys. Chem. Solids* 29:1553 (1968).
- 24. C.R. Brooks, *J. Phys. Chem. Solids* 29:1377 (1968).
- 25. G. Cordoba and C. R. Brooks, *Phys. Star. Sol. (a)* 13:Klll (1972).
- 26. C.-C. Yeh and C. R. Brooks, *High Temp. Sci.* 19:545 (1973).
- 27. C.R. Brooks, *Phys. Stat. Sol. (b)* 89:K123 (1978).
- 28. A.A. Maradudin and P. A. Flinn, *Ann. Phys.* 15:337 (1961).
- 29. R.C. Shukla, *Int. J. Thermophys.* 1:73 (1980).