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Contributions to the Heat Capacity of 
Alpha (HCP) Titanium from 200-1000 K 
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The heat capacity at constant pressure Cp of alpha (HCP) titanium from 200 to 
1000 K has been analyzed for contributions from lattice vibrations and electron 
excitations. Experimental data in the literature have been used to obtain the heat 
capacity at constant volume C v by the dilation correction. From C v has been 
subtracted an harmonic lattice contribution Cvt 4 given by the Debye heat 
capacity using a single Debye temperature and an electronic contribution CvE. 
The difference C v - (Cvl 4 + CvE ) is positive, and from about 600 to 1000 K it 
is real in the sense that it is larger than the experimental uncertainty in Cv. This 
difference is attributed to an anharmonic lattice vibration contribution CVA. 
Two models for CvE have been used. One, which includes electron-phonon 
enhancement, leads to a CvA of about 15% of Cv at 1000 K. The other takes 
into account the shift in the density of states with temperature and leads to a 
CvA of about 5% of C v. 

KEY WORDS: anharmonic contributions to heat capacity; electronic heat 
capacity; heat capacity; lattice heat capacity; titanium. 

1. I N T R O D U C T I O N  

It is frequently assumed that the heat  capacity of pure solid metals is 
composed of i ndependen t  cont r ibut ions  associated with lattice vibrat ions  
and  conduc t ion  electrons, and,  at sufficiently high temperatures,  the forma- 

t ion of equi l ibr ium lattice defects. The lattice con t r ibu t ion  is separated into 

components  associated with ha rmonic  (CvH)  an d  anha rmon ic  (CvA)  lattice 
vibrations.  Us ing  models for the calculat ion of the cont r ibut ions  from 
conduc t ion  electrons CvE, the format ion  of defects, a nd  the ha rmon ic  
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lattice vibrations, the anharmonic contribution can be obtained by sub- 
tracting the sum of the other contributions from Cv. 

Since the heat capacities of solids are measured at constant pressure, to 
apply the above procedure requires first obtaining Cv from C e by the 
dilation correction [1], given by 

C D = C p -  C v = a 2 V T / K r  (1) 

where V is the specific volume, a is the volumetric coefficient of thermal 
expansion, K r is the isothermal compressibility, and T is the absolute 
temperature. For metals, K r usually is not available above 300 K, so that 
certain approximations must be employed to estimate the dilation correc- 
tion. 

In this paper, new measurements [2] of the heat capacity of alpha 
(hexagonal-close-packed) Ti are used to analyze the contributions to the 
heat capacity from 200 to 1000 K. All the quantities in Eq. (1) are available 
over this temperature range, so that C v can be calculated directly. It is 
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Fig. 1. Lattice parameter "a"  of alpha t i tanium as a function of temperature. 
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assumed that the contribution to the heat capacity from harmonic lattice 
vibrations Cvl4 is given by the Debye theory, using a single Debye tempera- 
ture. For Ti, the contribution from the formation of lattice defects is 
negligible at these low temperatures [3]. Models for the contribution to the 
heat capacity from electron excitation Cve are examined, including 
electron-phonon interaction. The sum CvH + CvE is subtracted from C v to 
obtain an estimate of the contribution CVA from anharmonic lattice vibra- 
tions. 

2. CALCULATION OF C D AND C v 

Cp for Ti above 300 K is taken from our recent measurements [2], in 
which the error is about _+ 1%. Comparison of these measurements to 
others in the literature is given in ref. [2] and is not repeated here. The data 
of Clusius and Franzosini [4], Stalinski and Bieganski [5], and Kothen and 
Johnston [6] were used to define a curve from 200 to 300 K from which Cp 
values were taken. These data agree in this range within +_ 0.5%, and the 
curve smoothly matches the curve used above 300 K. 

There have been several measurements of linear expansion and lattice 
parameters for Ti which allow determination of V and a as functions of 
temperature. The lattice parameter data [7-9] are shown in Figs. 1 and 2 
and are well represented by straight lines. These data were used to calculate 
V as a function of temperature as shown in Fig. 3. The upper straight line 
was obtained from the straight lines fitted to the lattice parameters in Figs. 
1 and 2. The curve of Yaggee et al. [10] was obtained from their density 
value measured at 25~ and the coefficient of expansion was derived from 
their length measurements. 
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Fig. 2. Lattice parameter  "c" of alpha t i tanium as a function of temperature. 
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Fig. 3. The molar volume V as a function of temperature for alpha titanium. 

Values of a derived from the length measurements of Hidnert [11], 
Griener and Ellis [12], McCoy [13], and Yaggee et al. [10], are shown in Fig. 
4. A necessity in deriving a from their linear thermal expansion coefficients 
az is that measurements must have been made on polycrystalline samples of 
random orientation. Since alpha Ti is HCP, any preferred orientation in the 
sample will give results from which 3a z will not be equal to a. None of the 
investigators have determined the degree of preferred orientation, so that it 
is difficult to assess the accuracy of the experimental results. 

The values of a and V derived from the data of Yaggee et al. [10] have 
been chosen to use in calculating CD. Their results are consistent with those 
of the other investigators and cover most of the requisite temperature range. 
From 300 to 200 K, we have extrapolated the a and V curves based on 
their data. It is seen in Fig. 3 that V scatters within _+ 0.3%, which is taken 
as its uncertainty. For ~, the scatter or uncertainty is about + 5% (Fig. 4). 

The only data for Ti from which the isothermal compressibility K can 
be derived are those of Fisher and Renken [14]. They determined the 
velocity of sound in single crystals as a function of temperature, from 
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Fig. 4. The volumetric thermal expansion coefficient a as a function of temperature for alpha 
titanium. 

>., 

% 

Z 
>, 

,,I 
o~ 
E 
o 

2 _u 
g 

x 10 -12 
1100 - -  

1.000 ! 

I1% 

0.900 L 
0 200 400 6oo 8oo ~000 1200 

temperature (K) 

Fig. 5. Adiabatic compressibility K s for alpha titanium as obtained by Fisher and Renken 
[i41. 



376 Brooks  

which they calculated the elastic constants and the adiabatic compressibil- 
ity K s (Fig. 5). Their reported accuracy in measuring the elastic constants 
gives an uncertainty in K s of about _+ 1%. 

The use of Eq. (1) to obtain C V requires converting K s to K [1]. 
Incorporating this conversion gives 

Ks  C1}T (2) 
C V = a 2 V T  2 + K s C p T  

C V calculated from Eq. (2) using the selected values of C e, V, a, and 
K s is shown in Fig. 6. Using the uncertainties mentioned above for each 
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Fig. 6. The heat  capacity of  alpha (HCP)  t i tanium from 200 to 1000 K. The bars at the ends 
of  Ce, Cv, and CvH show the uncertainty in these quantities.  
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quantity, the uncertainty in C v is about _+ 2%, which is shown by the bar at 
the end of the curve at 1000 K. 

At a temperature T, the calculated C v corresponds to the volume 
V(T); for comparison of C v to theoretical models, it must be converted to 
C v at a volume usually taken at 0 K. The expression to obtain the 
correction is given by Korshunov [15]. The difference in C v at 1000 K for 
the volume at that temperature (Fig. 3) and that at 0 K is estimated to be 
0.2 J .  mol-  1. K -  i. This is within the uncertainty of the calculation of C v 
and is ignored here. 

3. CALCULATION OF CvH AND Cve 

Now the agreement between the experimental C v and the sum of that 
estimated for a harmonically oscillating lattice (CvH) and electron excita- 
tion (CvE) is examined. To estimate Cvtz, the Debye expression with a fixed 
Debye temperature 0D is used. The review of Debye temperatures by 
Gschneidner [16] lists 0 D values from 370 to 430 K for Ti. CvH is not very 
sensitive to the value of 0 D at temperatures above the Debye temperature, 
so an intermediate value of 0 D = 400 K has been chosen. A variation in 0o 
of + 30 K alters C w by about +_ 2.5% at 300 K, and about _+ 0.5% at 1000 
K. Cvn is shown in Fig. 6; the bars at each end of the curve show the 
uncertainty in Cvn based on the uncertainty in 0 D. 

Free electron theory can be used to estimate Cve by the relation 

cvE= 1/3 2 2N(E  )r (3) 

where k is Boltzmann's constant, and N(Ee) is the density of states at the 
Fermi surface. If the density of state is independent of temperature, then 
Eq. (3) gives CvE proportional to T, or vT, where 2/is the low temperature 
heat capacity coefficient. Collins and Ho [17] obtained for Ti a value of 
~, = 3.36 • 10 -3 J .  mo1-1 . K -2 from their low temperature heat capacity 
measurements, which agrees within 2% with the other nine values which 
they surveyed. Cze using this value is shown in Fig. 7. 

Shimizu et al. [18] deduced the density of states for Ti from low 
temperature heat capacity data of Ti and Ti alloys. Then they took into 
account the shift in the density of states with temperature to obtain a 
temperature dependent electronic heat capacity coefficient ~,(T), so that 
CvbE = 3'(T)T. (The b represents band theory here.) Their result is shown in 
Fig. 7 and is higher than that given by the free electron theory. The sum 
C~E + Cv,  is shown in Fig. 6. 

Grimvall [19] has derived an expression for a temperature dependent 
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Fig. 7. The calculated electronic heat capacity CvE of alpha titanium based on the model by 
Shimizu et al. [18] and Grimvall [19]. 

coefficient due to electron-phonon interaction (see also, Fradin [20]): 

C~PE = (~0 4" YT)T (4) 

Here Yo is the coefficient in the absence of electron-phonon interaction, 
which can be calculated via Eq. (3) if the density of states at the Fermi level 
is known. There appear to be only two density of state calculations in the 
literature for Ti. From the density of states distribution curve of Shimizu et 
al. [18], a value of about 1.69 • 10 -3 is obtained and from that of Altmann 
and Bradley [21] a value of about 0.81 • 10 -3. To obtain Yr from the 
calculation of Grimvall requires its value at absolute zero, taken to be the 
value of -/given by Collins and Ho [17] from low temperature heat capacity 
measurements. Also required is the Einstein temperature, which was taken 
as 430 K; 7T is not very sensitive to the value chosen. Using these values, a 
curve for Cr was calculated for each of the two values of "/0 cited above. 
They are shown in Fig. 7. The sum C w + CvE for each of the three curves 
is shown in Fig. 6. 

4. T H E  ANHARMONIC HEAT CAPACITY Cw4 

In Fig. 8 is shown the difference between C v and (CvE + C w ) .  It is 
positive and is real in the sense that the sum obtained by either electronic 
model gives a result which is lower than the lower bound of the uncertainty 
in C v (see Fig. 6). The electronic contribution calculation of Grimvall 
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Fig. 8. The anharmonic heat capacity of A1, Cu, Au, Pb, Pt, and Ti. For Ti, curves are shown 
for CVA using two models for the electronic contribution to the heat capacity. 

depends on the value of the density of states at the Fermi level. For the 
density of states distribution curves of both Shimizu et al. [18] and Altmann 
and Bradley [20], the Fermi level falls on or near a shoulder. Thus the value 
of the density of states depends sensitively on the location of the Fermi 
level and the shape of the curve. Until these are better defined, Cve cannot 
be determined more accurately. However, in spite of these uncertainties, it 
appears that the difference between C v and (CvE + CvH) is real and 
positive. 

We attribute this "excess" heat capacity to anharmonic lattice vibra- 
tions. The heat capacities of Au [22], A1 [23], Cu [24], Pb [25], and Pt 
[26, 27], for which the dilation correction can be made exactly (i.e., experi- 
mental data for a, V, and K are available as a function of temperature), 
have been analyzed in a fashion similar to that employed here for Ti. The 
results are shown also in Fig. 8. Examination of the uncertainties leading to 
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the calculation of CvA indicates that the magnitude of CvA for Cu, Au, and 
perhaps A1 is small, and the sign uncertain. However, for Pb, A1, Pt, and 
now Ti, the effect is real, and the sign well defined. 

There have been some theoretical calculations of CvA, but the magni- 
tude (and in some cases the sign) is uncertain [28,29]. Generally, the 
prediction is that CvA is linear with temperature, which, considering the 
uncertainties in calculating CvA from experimental data, is consistent with 
the results of the treatment here (Fig. 8). No theoretical calculations of CvA 
have been made for Ti, but the result of the treatment in this paper gives an 
estimate of CvA to which comparison now can be made. 
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